
Automated Discovery of
Simulation Between Programs?

Grigory Fedyukovich1, Arie Gurfinkel2, and Natasha Sharygina1

1 Formal Verification Lab, University of Lugano, Switzerland,
{grigory.fedyukovich,natasha.sharygina}@usi.ch

2 SEI/CMU, USA, arie@cmu.com

Abstract. Deciding equivalence between two programs (called a source
and a target program) is often reduced to finding a simulation relation
between them. This is computationally expensive and often requires a
manual guidance. In this paper, we propose an abstraction-refinement-
guided approach, called SimAbs, to automatically construct a simulation
relation between the source program and an abstraction of the target
program. In our approach both the abstraction and the simulation rela-
tion are discovered automatically, and deciding whether a given relation
is a simulation relation is reduced to deciding validity of a ∀∃-formula.
We present a novel algorithm for deciding such formulas using an SMT-
solver. In addition to deciding validity, our algorithm constructs a wit-
nessing Skolem relation. These relations enable the refinement-step of
SimAbs. We have implemented SimAbs using UFO framework and Z3
SMT-solver and applied it to finding simulation relations between C pro-
grams from the Software Verification Competition. Our empirical results
show that SimAbs is efficient at finding a simulation relation.

1 Introduction

There is a growing interest in the problems of regression verification and pro-
gram equivalence checking [21, 22, 11, 14, 10, 20, 9]. In general, the problem is to
identify (and check) the condition under which two programs (referred to as the
source (S) and the target (T)) are equivalent (i.e., satisfy the same properties).
These approaches prevent the wasted efforts in re-analyzing equivalent parts of
the programs. For instance, while proving safety of two closely related programs,
obtaining a proof of one program and adapting it to another program can be
more efficient than proving each program from scratch (e.g., [10, 9]).

For example, in [9] we applied the idea of adapting proofs to analyze whether
compiler optimizations preserve safety properties. While efficient, this method
had a number of limitations. The most crucial one is that it required a mapping
between variables of S and T that was either guessed automatically or provided
?

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the United States Department
of Defense. This material has been approved for public release and unlimited distribution. DM-0001771

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
18 OCT 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Automated Discovery of Simulation Between Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Arie Gurfinkel Grigory Fedyukovich /Natasha Sharygina

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SimAbs

Synthesize

T

S

Abstract

Solve

Refine

nothing to abstract

S � [↵]T

S � [↵]T

⇢[↵][^Sk]

Sk

↵T

S, [↵]T

valid

invalid

(a)

TS

..
.

⇢

↵T

↵0T

↵(n)T

⇢↵

⇢↵0

⇢↵(n)

(b)

Fig. 1: (a) SimAbs and (b) its search space.

by the user. The simplest mapping that equates variables of S and T based on
their names (i.e., variable a of S is mapped to a variable a of T) used in [9] is
often insufficient. In practice, it sometimes results in no interesting facts lifted
from S to T . As an example, consider compiler spilling that may introduce many
new variable names in T that did not appear in S.

Namjoshi et al. [19, 20] show that a simulation relation is the most general
mapping to transfer proofs between S and T . However, discovering a simulation
relation is difficult (e.g., [20] expects the relation to be provided by the user).
Moreover, their result only applies when T actually simulates S, whereas we
are interested in cases where T is obtained by a small modification from S, but
might not simulate S.

In this paper, we address two problems: (1) the challenge of automatically
constructing a simulation relation for two arbitrary programs, and (2) if the tar-
get T does not simulate the source S, the challenge of finding a strong abstraction
of the target T that simulates the source S.

Our main contribution is an iterative abstraction-refinement approach called
SimAbs, illustrated in Fig. 1a. The inputs are the source and the target pro-
grams S and T , respectively. The output is an abstraction of T (possibly T
itself) that simulates S and a simulation relation ρ, or a step of S that cannot
be simulated by any abstraction of T (in the considered space of abstractions).
SimAbs first guesses a relation ρ between S and T (Synthesize step). Second, it
checks whether ρ is a simulation relation between S and the current abstraction
of T (Solve step). Third, if the check succeeds, it refines the current abstraction
of T and synthesizes new relation ρ (Refine step). Otherwise, it looks for a bet-
ter abstraction α of T (Abstract step). The algorithm terminates when either
no refinement or no abstraction is possible. The search space of the algorithm
is shown in Fig. 1b. SimAbs explores the space of abstractions of T , starting
with the most general abstraction (called αT in Fig. 1b) that simulates S, and
iteratively refines it until no further refinement is possible.

In contrast to existing algorithms for checking whether a given relation ρ is
a simulation relation (e.g., [18, 13, 21]), we reduce the problem to deciding va-

2

lidity of a ∀∃-formula. Intuitively, the formula says “for each behavior of S there
exists a corresponding behavior of [α]T ”. Our second contribution is a novel de-
cision procedure, AE-VAL, for deciding validity of ∀∃-formulas over Linear Real
Arithmetic (LRA). Our procedure is similar to the qe_sat algorithm of [23].
However, in addition to deciding validity, we also extract a Skolem relation to
witness the existential quantifier. This Skolem relation (called Sk in Fig. 1a) is
the key to the Refine step of SimAbs.

We implemented SimAbs and AE-VAL on the top of the UFO framework [1,
15] and an SMT-solver Z3 [8], respectively. We have evaluated SimAbs by dis-
covering simulation relations between programs and their optimizations (done
by LLVM). Our results show that SimAbs is able to efficiently discover nontriv-
ial simulation relations between the original and the optimized versions for most
of the benchmarks.

The rest of the paper is structured as follows. After defining notation in
Sect. 2, we describe how to reduce the problem of checking a simulation rela-
tion to a validity check of a specific ∀∃-formula in Sect. 3. The algorithm AE-
VAL designed to solve such formulas and extract Skolem relation is presented
in Sect. 4. Sect. 5 provides implementation details for the algorithm SimAbs.
Sect. 6 presents an evaluation of our implementation of SimAbs. Sect. 7 com-
pares our work with the related one, and Sect. ?? concludes the paper.

2 Background

In this section, we give the necessary definitions of a program, a transition sys-
tem, and a simulation relation.

Definition 1. A program P is a tuple 〈Var , Init ,Tr〉, where Var ≡ V ∪ L ∪ V ′

is a set of current, next-state, and local variables, respectively; Init is a formula
over V that defines the initial state, and Tr is a formula over Var that denotes
the transition relation.

Definition 2. A program P = 〈Var , Init ,Tr〉 induces a transition system T =
〈S, I,R〉, where S is a set of valuations to all variables in V (i.e., states),
I = {~s ∈ S | ~s |= Init} is the set of initial states, R = {(~s,~t) | ~s,~t ∈ S,∃~l ∈ L · Tr(~s,~l, ~t′)}
is a transition relation. Throughout, we write S ′ for {~s′ | ~s ∈ S}, and ~t′ for ~t(x′).
Definition 3. Program P1 = 〈V ∪L1 ∪ V ′, Init1,Tr1〉 is an abstraction of pro-
gram P2 = 〈V ∪ L2 ∪ V ′, Init2,Tr2〉 iff

Init2 =⇒ Init1 (∃~l2 ∈ L2 · Tr2(~s, ~l2, ~s′)) =⇒ (∃~l1 ∈ L1 · Tr1(~s, ~l1, ~s′)) (1)

An example of abstraction AQ of Q is shown on Fig. 2b-2c. In AQ, non-
determinism is introduced on the level go the input parameters.

Definition 4 (cf.[20]). Given two transition systems S and T , a relation ρ ⊆ SS × ST
is a simulation relation if (1) every state in IS is related by ρ to some state in
IT , and (2) for all states ~s, ~s′ and ~t, such that (~s,~t) ∈ ρ and (~s, ~s′) ∈ RS there
is some state in ST such that (~t, ~t′) ∈ RT and (~s′, ~t′) ∈ ρ.

3

int P (int a,
int b, int c)

{
int m = b + c;
int ret = m + a;
return ret;

}

(a) Source program P

int Q (int a,
int b, int c)

{
int m = a + b;
int n = c + 1;
int ret = m - n;
return ret;

}

(b) Target program Q

int AQ (int a,
int b, *)

{
int m = a + b;
int n = c + 1;
int ret = m - n;
return ret;

}

(c) Abstraction of Q

Fig. 2: Fragments of the three programs in C

We write, T1 �ρ T2, to denote that a transition system T1 is simulated by a
transition system T2 via a simulation relation ρ. We write T1 � T2 to indicate
existence of a simulation between T1 and T2. We extend the notion of a simulation
from transition systems to programs in the usual way: a program P1 is simulated
by a program P2 iff their corresponding transition systems simulate each other.

Lemma 1. If P1 is an abstraction of P2 then the corresponding transition sys-
tems T2 �id T1, where id is the identity relation.

Lemma 2. If T1 � T2 and T2 � T3 then T1 � T3.

3 From Simulation to Satisfiability

In this section, we show that deciding whether a given relation ρ is a simulation
relation is reducible to deciding validity of a ∀∃-formula. We then show how
Skolem functions witnessing the validity of the quantifiers can be used to refine
a given simulation relation.

3.1 Deciding Simulation Symbolically

Let S(~s, ~x, ~s′) and T (~t, ~y, ~t′) be formulas denoting transition relations of two
programs, where ~s and ~t, ~s′ and ~t′, ~x and ~y are current-state, next-state, and
local variables, respectively. Let ρ(~s,~t) denote a relation between state variables
of S and T . For simplicity, we omit the arguments and simply write S, T , and
ρ, when the arguments are clear from the context.

Lemma 3. Given programs S and T , a relation ρ is a simulation relation be-
tween S and T iff

ρ(~s,~t) ∧ ∃~x · S(~s, ~x, ~s′) =⇒ ∃~t′, ~y · T (~t, ~y, ~t′) ∧ ρ(~s′, ~t′) (2)

The left-hand-side of implication (2) represents the set of all behaviors of S
and the set of all matched input conditions. The right-hand-side of (2) represents
the existence of a matching behavior in T .

4

Example 1. Consider two programs P and Q shown on Fig. 2a and Fig. 2b, re-
spectively. Their corresponding transition relations are shown in (3):

P ≡ mP = bP + cP ∧ retP = mP + aP (3)
Q ≡ mQ = aQ + bQ ∧ nQ = cQ + 1 ∧ retQ = mQ + nQ

where the subscript indicates which program the corresponding variables is de-
fined in.

Let C and N be relations between current and next-state variables of P and
Q, respectively, defined as follows:

C ≡ aP = aQ ∧ bP = bQ ∧ cP = cQ N ′ ≡ retP = retQ (4)

Note that in general, unlike in our simplified definition in Section 2, current and
next-state variables of a program can differ, requiring us to split the simulation
relation into two components.
C and N is a simulation relation iff the following formula is valid:

C ∧ (∃mP · P) =⇒ ∃retQ,mQ, nQ ·Q ∧N (5)

Note that since Q is deterministic, the existential quantifiers in (5) are eliminated
trivially by substitution. In our example, (5) simplifies to 0 = 1, hence C and N
is not a simulation relation between P and Q. ut

3.2 Abstract Simulation

In this section, we show how to check whether a given relation ρ is a simulation
relation between a program S and an abstraction αT of a program T . We restrict
our attention to existential abstraction [6], although the results extend easily to
predicate abstraction as well. Our key result is to show that simulation checking
can be done without constructing an abstraction explicitly.

Let T be a transition relation of a program, and U a sub-set of the state-
variables of T . An existential abstraction, α∃

U , of T abstracts from T all variables
in U . Formally, α∃

U (T) ≡ ∃U,U ′ · T (~t, ~y, ~t′), where U ⊆ ~t. For example, the
program AQ in Fig. 2c is an existential abstraction of the program Q in Fig. 2b,
where U = {c}.

Deciding whether a given relation ρα is a simulation between a concrete
program S and an abstract program αT can be done without computing the
abstraction explicitly. Intuitively, the variables that are abstracted away are
simply treated as local variables of T .

Lemma 4. Let S(~s, ~x, ~s′) and T (~t, ~y, ~t′) be two programs. Let U ⊆ ~t be the set
of abstracted variables and ~t1 = ~t \ U . A relation ρα is a simulation relation
between S and α∃

U (T) iff

ρα(~s, ~t1) ∧ S(~s, ~x, ~s′) =⇒ ∃~t′1, ~y, U, U ′ · T (~t, ~y, ~t′) ∧ ρα(~s′, ~t′1) (6)

Proof. Immediate from (2) and the definition of existential abstraction. ut

5

Recall that in Example 1, program P was shown to be not simulated by Q
via identity relation. Interestingly, this result is still usefull to obtain a valid
simulation relation between P and Q by creating implicit abstraction of Q and
further refining it. We will demonstrate this 2-steps procedure in Example 2.

Example 2. As a first (abstraction) step, we create an implicit abstraction of Q
by choosing a state-variable (let it be c) to be existentially quantified. Note that
the produced abstraction is equivalent to AQ. Instead of encoding a transition
system AQ from scratch (similarly to (3)), we let it be equal to AQ ≡ ∃cQ ·Q

Relation C and N (disproven to be a simulation relation for P and Q) are
abstracted away in correspondence with AQ:

Cα ≡ aP = aQ ∧ bP = bQ Nα ≡ retP = retQ (7)

C and N is a simulation relation between P and AQ iff the following formula is
valid:

C ∧ (∃mP · P) =⇒ ∃cQ, retQ,mQ, nQ ·Q ∧N (8)

Clearly, (8) is valid iff there is a Skolem function for the existentially quantified
variable cQ. Note that sk cQ(cP) = −cP − 1 is such a function:

C ∧ (∃mP · P) =⇒ (cQ = −cP − 1 =⇒ ∃retQ,mQ, nQ ·Q ∧N) (9)

As a second (refinement) step, sk cQ is used to strengthen a simulation relation
C and N between P and AQ.

Cextα ≡ aP = aQ ∧ bP = bQ ∧ cQ = −cP − 1 N ext
α ≡ retP = retQ (10)

Note that Cextα and N ext
α is a simulation relation between P and Q. ut

Detailed definition of the Skolem function, its generalization and application
to the simulation-relation-checking problem is given in Sect. 3.3.

3.3 Refining Simulation by Skolem Relations

In this section, we show how to use a Skolem relation that is witnessing the
validity of the abstract simulation check (6) to refine an abstract simulation
relation. We begin with the classical definition of a Skolem function:

Definition 5. Given a valid formula ∀x · ∃y · f(x, y), a Skolem function for y,
sky(x) is a function such that ∃y · f(x, y) ⇐⇒ f(x, sky(x)).

We now relax the definition by allowing the relationship between y and x to be
an arbitrary relation:

Definition 6. Given a valid formula ∀x · ∃y · f(x, y), a Skolem relation for y
is a relation Sky(x, y) such that ∃y · f(x, y) ⇐⇒ (Sky(x, y) =⇒ f(x, y)).

6

To see that Def. 6 is a generalization of Def. 5, let sky(x) be a Skolem function
of y in ∃y · f(x, y). Then, Sky(x, y) ≡ (y = sky(x)) is the corresponding Skolem
relation.[

Sky(x, y) =⇒ f(x, y)
]
≡

[
y = sky(x) =⇒ f(x, y)

]
≡

[
f(x, sky(x))

]
(11)

Clearly, the opposite is not true – not every relation can be represented by a
Skolem function.

As shown above, a Skolem relation eliminates an existential quantifier in a
valid ∀∃-formula. In fact, validity of a ∀∃-formula is equivalent to an existence
of an appropriate Skolem function (or relation). We now adapt this to the case
of simulation checking.

Theorem 1. Let S(~s, ~x, ~s′) and T (~t, ~y, ~t′) be two programs such that S � T ,
and U ⊆ ~t. Let ρα be a simulation relation such that S �ρα α∃

U (T). Then, there
exists a relation Sk(~s, U) such that (a) ρα ∧ Sk is a simulation relation between
S and T and (b) Sk is a Skolem relation for U in (6).3

Recall that by Lemma 3, simulation checking between transition systems S
and T is reduced to deciding validity of formula (2). In the next section, we will
focus on solving (2) by iterative quantifier elimination and present a generalized
algorithm for it.

4 Deciding Validity of ∀∃-formulas and Extracting
Skolem Relations

In this section, we present a novel algorithm, AE-VAL, for deciding validity of
∀∃-formulas. Without loss of generality, we restrict the input formula to the form
S(~x) =⇒ ∃~y · T (~x, ~y), where S has no universal quantifiers, and T is quantifier-free.

4.1 Deciding Validity of ∀∃-formulas

Our algorithm is based on a notion of Model-Based Projection (MBP), intro-
duced in [15], that under-approximates existential quantification. Let M be a
model of a formula T (~x, ~y). Then, T~y(~x) is an MBP if the following two condi-
tions hold: (a) M |= T~y(~x) and (b) T~y(~x) =⇒ ∃~y · T (~x, ~y). That is, the only ~x
variables appear in T , T~y, M is a model of T~y, and T~y is an implicant of T . Fur-
thermore, when ~y and T are fixed, MBP is finite. That is, there are finitely many
projections T~y1(~x), T~y2(~x), . . . , T~yn(~x) such that (∃~y · T (~x, ~y)) = ∨n

i=1 T~yi(~x) for
some n. In our implementation, we are using an MBP function from [15] for
LRA that is based on Loos-Weispfenning [16] quantifier elimination. Addition-
ally, we assume that for each projection T~yi the MBP procedure produces a
local Skolem relation φi(~x, ~y) such that φi(~x, ~y) =⇒ (T~yi(~x) =⇒ T (~x, ~y)). Lo-
cal Skolems are a natural by-product of the MBP algorithm in [15]. We write
3 Due to lack of space, the proof is moved to Appendix A.

7

Algorithm 1: AE-VAL (S(~x),∃~y · T (~x, ~y))
Input: S(~x), ∃~y · T (~x, ~y)
Output: res ∈ {valid, invalid} of S(~x) =⇒ ∃~y · T (~x, ~y)
Data: Incremental SmtSolver, Model M ,
Model-based projection T~y(~x), local Skolem relation φi(~x, ~y)

1 SmtAssert(S(~x));
2 while true do
3 res← SmtSolve();
4 if (isUNSAT(res)) then return valid;
5 SmtPush();
6 SmtAdd(T (~x, ~y));
7 res← SmtSolve();
8 if (isUNSAT(res)) then return invalid;
9 M ← SmtGetModel(T (~x, ~y)));

10 T~y, φ(~x, ~y)← GetMBP(~y,M, T (~x, ~y)));
11 SmtPop();
12 SmtAdd(¬T~y);
13 end

T~y1
(~x)

S(~x)

T~y2
(~x)

T~y3
(~x)

9~y · T (~x, ~y)

M1

M2

M3

Fig. 3: Illustration to Ex-
ample 3 with 3 itera-
tions of AE-VAL (S, ∃T
- hexagons, MBPs - ovals,
models - points)

(Ti, φi)← GetMBP(~y,M, T (~x, ~y)) for an MBP algorithm that takes a formula
T , a model M of T and a vector of varialbes ~y, and returns a projection Ti of T
that covers M and the corresponding local Skolem φi.

AE-VAL is shown in Alg. 1. Given two formulas S(~x) and ∃~y · T (~x, ~y) it
decides the validity of S(~x) =⇒ ∃~y · T (~x, ~y). AE-VAL enumerates the models
of S ∧ T . In each iteration, it first checks whether there S is non-empty (line 3)
and then looks for a modelM of S∧T (line 9). IfM is found, AE-VAL constructs
an MBP T~y of T and M (line 10) and blocks all models contained in T~y from
S (line 12). It iterates until either it discovers that there is a model of S that
can not be extended to a model of T (line 8); or all models of S(~x) are blocked
(line 4). In the first case, the formula is invalid. In the second, every model of S
has been extened to some model of T , and the formula is valid.

Possible three iterations of AE-VAL are depicted graphically in Fig. 3. In
the first iteration, AE-VAL selects a model M1 and generalizes it to an MBP
T~y1 . Then, it picks a modelM2 and generalizes it to an MBP T~y2 . Finally, it picks
a model M3 and generalizes it to T~y3 . At this point, all models of S are covered
by ~y-free implicants of T , and the algorithm terminates. We demonstrate this
further in the following example.

Example 3. Let ~x ≡ {a, b}, ~y ≡ {a′, b′, c′}, and S and T be defined as follows:

S ≡ (a = b+ 2) (12)
T ≡ (a′ = a+ b) ∧ (a′ = 1 =⇒ b′ = c′) ∧ (a′ = 2 =⇒ b′ = c′ + 1) ∧

(a′ = 3 =⇒ b′ = c′ − 1)

We use Φi to denote the formula in the SMT context at the beginning of iteration
i of AE-VAL. Initially, Φ1 = S. The first model is M1 ≡ {a = 0, b = −2, a′ =

8

−2, b′ = 0, c′ = 0}. GetMBP(~y,M1, T) returns:

T1 ≡ (a+ b 6= 2) ∧ (a+ b 6= 3) φ1 ≡ (a′ = a+ b) ∧ (b′ = c′) (13)

In the second iteration, Φ2 = Φ1∧¬T1,M2 ≡ {a = 2, b = 1, a′ = 3, b′ = 0, c′ = 1},
and GetMBP(~y,M2, T) returns:

T2 ≡ (a+ b 6= 1) ∧ (a+ b 6= 2) φ2 ≡ (a′ = b+ a) ∧ (b′ = c′ − 1) (14)

In the third iteration, Φ3 = Φ2 ∧¬T2, M3 ≡ {a = 2, b = 0, a′ = 2, b′ = 1, c′ = 0},
and GetMBP(~y,M3, T) returns:

T3 ≡ (a+ b 6= 1) ∧ (a+ b 6= 3) φ3 ≡ (a′ = a+ b) ∧ (b′ = c′ + 1) (15)

Since Φ4 = Φ3 ∧ ¬T3 is UNSAT, EA-VAL returns Valid and terminates. ut

4.2 Extracting Skolem Relation

In the previous section, we have shown an algorithm AE-VAL that decides va-
lidity of S(~x) =⇒ ∃~y · T (~x, ~y). As a by-product, it constructs a set of MBPs
{T~yi(~x)} for T and the corresponding local Skolem relations {φ~yi(~x, ~y)}. In this
section, we show how this information can be turned into a Skolem relation Sk~y(~x, ~y).

Intuitively, Sk~y(~x, ~y) maps each model of S to a corresponding model of T .
However, the local Skolem relation φ~yi(~x, ~y) provides only a partial map (i.e.,
only for the subset S(~x)∧ T~yi(~x) of S). Moreover, the local Skolem relations are
not disjoint (e.g., see Fig. 3). Thus, to define the Skolem relation Sk , we need to
address two issues: (1) we need to find a partitioning {Ii}ni=1 of S, and (2) each
partition must be associated with an appropriate local Skolem relation.

The constraints on the partitions Ii are as follows. First, a partition Ii must
cover all models of T~yi that are not already covered by other elements of the
partition. Second, it should not include any models that are not contained in T~yi .
Writing these requirements formally, we get the following system of constraints:

S(~x) ∧ T~y1(~x) =⇒ I1(~x)

S(~x) ∧ T~y2(~x) ∧ ¬T~y1(~x) =⇒ I2(~x)

...

S(~x) ∧ T~yn(~x) ∧ ¬T~y1(~x) ∧ ¬T~y2(~x) ∧ ... ∧ ¬T~yn−1
(~x) =⇒ In(~x)

S(~x) ∧ I1(~x) ∧ ¬T~y1(~x) =⇒ ⊥
...

S(~x) ∧ In(~x) ∧ ¬T~yn(~x) =⇒ ⊥

(16)

Note that in (16), S and {T~yi} are first-order formulas, and {Ii} are uninterpreted
predicates. The set of constrains corresponds to a set of recursion-free Horn
clauses. Thus, we can find an interpretation of the predicates {Ii} using a Horn-
clause solver. In our implementation, we use the solver of Z3, but other solutions,
for example, based on interpolation, are also possible.

9

We now define the Skolem relation Skvy(~x, ~y) as follows:

Sk~y(~x, ~y) ≡


φ~y1(~x, ~y) if I1(~x)
· · ·
φ~yn(~x, ~y) else if In(~x)

(17)

The following two theorems show the soundness and completeness of our Skolem
relation Sk~y(~x, ~y). Soundness means that for chosen model ~x, Sk~y(~x, ~y) satisfies
the Def. 6. Completeness means that Sk~y(~x, ~y) is defined for all models of ~x.

Theorem 2 (Soundness of Skolem Relation). If the set {Ii(~x)} is a solution
to (16), and Sk~y(~x, ~y) is as in (17) then: S(~x) ∧ Sk~y(~x, ~y) =⇒ T (~x, ~y).

Proof. Simplifying (17), we need to prove that for every 1 ≤ i ≤ n, S(~x)∧Ii(~x)∧
φ~yi(~x, ~y) =⇒ T (~x, ~y). It is enough to prove that for every i, S(~x) ∧ Ii(~x) =⇒
T~yi(~x), which is guaranteed by the last n constraints of (16). ut

Theorem 3 (Completeness of Skolem Relation). If the set {Ii(~x)} is a
solution to (16) then S(~x) =⇒ ∨n

i Ii(~x).

Proof. Follows immediately from the first n constraints of (16). ut

Example 4. A partitioning I1, I2, I3 that determines a Skolem relation for Ex-
ample 3 is: I1 ≡ (b 6= 1) ∧ (b 6= 0), I2 ≡ b ≥ 1, and I3 ≡ b = 0. ut

Constructing a Minimal Skolem relation. Any solution to (16) creates a Skolem
relation. But not all Skolem relations are equal. In practice, we often like a
Skolem relation that minimizes the number of variables on which each parti-
tion depends. For example, in Example 4, we have chosen a partition that only
depends on the variable b alone. A simple way to find a minimal solution is
to iteratively restrict the number of variables in each partition in (16) until no
smaller solution can be found. We leave the problem of finding the minimum
partitioning for future work.

5 Simulation-Abstraction-Refinement Loop

In this section, we present our algorithm SimAbs that iteratively constructs and
strengthens a simulation relation. While so far we have assumed that a program
is represented by a single transition relation, in practice, our algorithms operate
on the Cut Point Graph (CPG) [12] representation. A CPG (or a Large Block
Encoding (LBE) [4]) is a generalization of a Control Flow Graph (CFG) in which
nodes (called cutpoints) correspond to loop heads and edges to longest loop free
program fragments. In this section, we use CPGs informally and refer the reader
to [12] for the formal definition.

The main loop of SimAbs is shown in Alg. 2. The input is two programs S
and T . The output is an abstraction αT of T and a simulation relation ρα such

10

Algorithm 2: SimAbs(S, T)
Input: programs S and T ,
abstraction quality metric Q : α→ {>,⊥}
Output: an abstraction αT ,
and a simulation relation ρα, s.t. S �ρα αT

1 ρ← Synthesize(S, T,∅);
2 while (>) do
3 αpreT ← αT ;
4 αT, ρα ← FindAbs(S, T, ρα);
5 if (αT 6= U) then return U,∅;
6 αT, ρα ← Extend(S, αT, ρα);
7 if (Q(αT)∨ (αpreT = αT)) then return αT, ρα;

Algorithm 3: FindAbs(S, T, ρ)
Input: programs S and T , and a relation ρ
Output: an abstraction αT ,
and a simulation relation ρα, s.t. S �α αT

1 for each (u, v) ∈ E do
2 if (τS(u, v) 6�ρ τT (u, v)) then
3 αT ←Weaken(T);
4 if (αT 6= U) then
5 ρα ← Synthesize(S, αT,∅);
6 return FindAbs(S, αT, ρα)
7 else return U,∅;
8 return T, ρ;

Algorithm 4: Extend(S, αT, ρα)
Input: S, abstraction αT , simulation relation ρα
Output: abstraction αextT , simulation relation ρextα

1 ρextα ← ρα; αextT ← αT ;
2 WL← E ;
3 while (WL 6= ∅) do
4 (u, v)← GetWtoSmallestEdge(WL);
5 WL←WL \ {(u, v)};
6 if (τS(u, v) �ρextα ταext (T)(u, v)) then
7 Sk ← ExtractSkolem(u, v, ρextα);
8 αextT ← Strengthen(αT, Sk);
9 ρextα ← Synthesize(S, αT, Sk);

10 WL←WL∪ {(v, x) ∈ E | x ∈ CP} ∪ {(y, v) ∈ E | y ∈ CP};
11 else return αT, ρα;
12 return αextT, ρextα

that S �ρα T , if such an abstraction exists. In the presentation, we assume that
S and T share the set of cutpoints CP, but might have different interpretation
of control-flow edges by loop-free program fragments. However, our algorithm
extends to the general case where S and T have different cutpoints as well.

SimAbs begins by guessing an initial relation ρ using Synthesize. The ini-
tial guess can be an arbitrary relation between the CPGs of S and T . In our
implementation, for every cutpoint, we take ρ to be the identity relation be-
tween the live variables of S and T at that cutpoint, that have identical names.
Then, SimAbs uses FindAbs to check whether there exists an abstraction of ρ
(including ρ itself) that is a simulation relation between S and a corresponding
abstraction αT of T . If this succeeds, the method Extend is used to refine the
abstraction αT and synthesize a new simulation relation ρα. This process con-
tinues until the abstraction is satisfied by some quality metric Q (line 7) (for
example, if it is sufficient to (dis-)prove some safety property of T) or it is equiv-
alent to an abstraction produced in the previous iteration (line 3). Otherwise,
SimAbs goes into the next iteration and finds another abstraction. If an abstrac-
tion cannot be constructed (we use a shortcut U for this), SimAbs terminates
with a negative result (line 5).

FindAbs (shown in Alg. 3) is given S, T and ρ. It traverses the set of
CPG edges E, common to S and T (line 1) in the Weak Topological Ordering
(WTO) [5] (in which inner loops are traversed before outer loops). For each
edge (u, v) ∈ E, FindAbs checks (on line 2) whether ρ is a simulation relation
between the loop-free program fragment τS(u, v) labeling the (u, v)-edge in S

11

and the corresponding loop-free program fragment τT (u, v) labeling the (u, v)-
edge in T . If the check succeeds for all edges, the ρ is a simulation relation
between S and T , and it is returned to the user. Otherwise, FindAbs chooses
an abstraction αT of T using the method Weaken, synthesizes a new ρα and
repeats the check for S, αT , and ρα. Weaken introduces non-determinism to
the interpretation of control-flow edges of T . In our implementation, the most
successful implementation of Weaken is the existential abstraction of all state-
variables that are live at the source and destination of the edge (u, v) for which
the simulation check has failed. For each iteration of SimAbs, FindAbs is given
a concrete program T , and always constructs a new abstraction from scratch.

Extend (shown in Alg. 4) is given S, αT , and ρα and constructs a refine-
ment ρextα of simulation relation ρα and corresponding refinement αextT of αT .
Extend maintains a work-list WL of control-flow edges to be processed. Ini-
tially, WL is populated with all the CPG edges E (line 2). In each iteration,
Extend strengthens αT and synthesizes a new ρα by strengthening the old ρα
by a Skolem relation Sk . Sk is produced from the proof of the simulation between
fragments τS(u, v) and ταT (u, v) of the smallest element (u, v) of E according to
the WTO (line 6). Finally, Extend updates WL (line 10) with the edges that
share the next-state variables that have appeared in Sk and iterates until WL is
empty. If in some iteration, a strengthening is impossible, Extend returns the
last successful values for ρextα and αextT .

Recall programs P and Q from Fig. 2a and Fig. 2b. In Examples 1 and 2, we
proved that P � Q. In the following , we show how SymAbs automates this.

Example 5. First, SymAbs is given P and Q; Synthesize guesses C and N as
in (4). Then FindAbs disproves that C and N is a simulation relation, but
chooses an implicit abstraction of Q (equivalent to AQ on Fig. 2c), and constructs
Cα and Nα, as in (7), for which the simulation-relation-formula (8) for P and AQ
is valid. Finally, Extend extracts Skolem relation and uses it to create Cextα and
N ext
α , as in (10) and confirms that it is a simulation relation for P and Q. ut

6 Evaluation

We have implemented SimAbs in the UFO framework, and evaluated it on the
Software Verification Competition (SVCOMP’14) benchmarks and instcombine
and simpifycfg optimizations of LLVM. The instcombine performs local arith-
metic optimizations (e.g., replacing a = 1 - 1 by a = 0). The simpifycfg per-
forms dead code elimination and basic block merging (e.g., replacing if (true)
{a++;} else {a--;} by a++). The combination of these optimizations provides
more aggressive optimizations.

For each source benchmark (S) (300 - 5000 lines of source code), we created a
target optimization (T) by two applications of (instcombine + simpifycfg).
We applied SimAbs to discover two simulations: S � T and T � S. Out of all
benchmarks, we chose 157 for which SimAbs terminates within 5 minutes. We

12

..
...

.

....................

.

..
.

.
.

.

. ..

.
..

.

...

.

..

. .

..
..
.
.

.

.

.

.

.

.
.

..

..

.
.

.

.

.
.

.

.
.
.

.
..

.

. ..
.
.
..
.

.
. .

.
..
.
.

.
..
.
..

.

...

.

..

.
.......
.

.

.
.

.
.

..

.
.

.
.. ..

.

.
.
.
.

20 40 60

S � T

S � ↵TS 6� ↵T

sec

S � T
id

(a) Simulation of S by T

..

.

..
.

.
.

.

.
.
.

.
...

.

.

..

.
............. . .
..........
.

..
. .

..
.
.

.
.. ...

.
.

.
.
.

.
..
.

.

.

.

.
.
.
.

.

.
.

.

.

.
..

.
.

.

.

.

.

.

.

.
..
.. .. .
. ..

.
..

.
.

..

id

T � S T � S

T � ↵ST 6� ↵S

20 40 60

sec

(b) Simulation of T by S

Fig. 4: Pie chart and running times in spherical coordinate system.

present the results in two diagrams in Fig. 4. Full results are available at http:
//www.inf.usi.ch/phd/fedyukovich/simabs.pdf4.

Each diagram is a pie chart and a collection of SimAbs execution times for
each benchmark in the spherical coordinate system. The pie chart in Fig. 4a
represents a proportion of four main classes of SimAbs results: whether (a-
b) T simulates S (in (a), via identity relation), (c) T does not simulates S,
but some abstraction αT does, (d) T does not simulate S and we did not find
an abstraction αT that does. Each dot represents a runtime of SimAbs on a
single benchmark. It is placed in one of the segments (a)–(d) with respect to
the outcome, and is assigned the unique polar angle and the radial distance to
represent time in seconds. For example, a benchmark on which S �id T solved
in 20s is placed in quadrant (a) in a distance 20 from the center. Closer to the
center means faster. Runs that took longer than 60s are placed on the boundary.
Fig. 4b is structured similarly, but with inverse order of S and T .

The experiment confirms our intuition that the original program more often
simulates the optimal one than vice versa. According to Fig. 4, in 115 cases
S � αT , and in 122 cases T � αS; in 40 cases S 6� αT , and in 27 cases T 6� αS.

The experiment confirms that the use of our novel simulation-abstraction-
refinement loop by SimAbs is necessary in majority of cases. There is a relatively
small subset of benchmarks (59 of S � T and 39 of T � S), in which the identity
relation, guessed at the first iteration of SimAbs is already a simulation relation
(but still, in many cases it took more than a minute to establish that), while
in the rest of the cases, SimAbs goes into the simulation-abstraction-refinement
loop and successfully terminates (faster than a minute).
4 For convenience, we have included the table of results in an appendix.

13

7 Related Work

The algebraic notion of simulation relation between programs dates back to
Milner [18]. The approach indirectly refers to simulation relation between S and
the abstraction of T , by introducing weak simulation, and to simulation relation
between S and T as strong simulation. While being purely theoretic, this work
does not consider a practical application of using weak simulations in order to
construct strong simulation.

Translation Validation for optimizing compiler [21] checks simulation relation
between a program and its GCC-optimization. As a secondary result, that work
proposes a simple heuristic to construct simulation relation, restricted to specific
optimizations. Checking is done on the level of control-flow graphs and takes into
account all program variables. In contrast, our SimAbs algorithm is able to find
simulation relation independently on an optimizer.

Classical approach to check that a relation is a simulation relation is by
game-theoretic approach, in which the state space of the source and the target
is traversed by the evader and a pursuer solvers. For instance, [13] applies it to
prove simulation relation between infinite graphs. In our setting, this result can
used to extend SimAbs to deal with programs with different CPGs.

The need of eliminating quantifiers by a method AE-VAL makes our ap-
proach similar to template-based synthesis [24, 3, 2, 17]. The goal of the approach
is to synthesize an arbitrary program that fulfills a given specification repre-
sented by a template. While instantiating existential quantifiers, synthesis is fill-
ing placeholders in the predefined template formula. While discovering a Skolem
relation on the top of valid simulation-relation-checking formula, we also perform
a synthesis, but do not require any template for it.

Apart of discovering simulation between programs, there exist another ways
to prove their equivalence. For example, rather practical solution to check equiv-
alence between a Verilog circuit and C program was established in [7]. It is based
on translation of both programs into quantifier-free propositional formula, sat-
isfiable iff the circuit and the program disagree.

References

1. A. Albarghouthi, A. Gurfinkel, and M. Chechik. UFO: A Framework for
Abstraction- and Interpolation-Based Software Verification. In CAV, 2012.

2. R. Alur, R. Bodík, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
FMCAD, pages 1–17, 2013.

3. T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified
horn clauses. In CAV, pages 869–882, 2013.

4. D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software
Model Checking via Large-Block Encoding. In FMCAD, pages 25–32, 2009.

5. F. A. Bourdoncle. Efficient Chaotic Iteration Strategies with Widenings. In Proc.
of FMPA’93, LNCS, pages 128–141, 1993.

6. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

14

7. E. M. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of c and verilog
programs using bounded model checking. In DAC, pages 368–371, 2003.

8. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, pages
337–340, 2008.

9. G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Incremental verification of com-
piler optimizations. In NFM, volume 8430 of LNCS. Springer, 2014.

10. G. Fedyukovich, O. Sery, and N. Sharygina. eVolCheck: Incremental Upgrade
Checker for C. In Proc. of TACAS’13, volume 7795 of LNCS, pages 292–307, 2013.

11. B. Godlin and O. Strichman. Regression verification. In DAC, 2009.
12. A. Gurfinkel, S. Chaki, and S. Sapra. Efficient Predicate Abstraction of Program

Summaries. In NASA Formal Methods, pages 131–145, 2011.
13. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on

finite and infinite graphs. In FOCS, pages 453–462, 1995.
14. M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Conditional equivalence. Technical

Report MSR-TR-2010-119, Microsoft Research, 2010.
15. A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for

Recursive Programs. In CAV, pages 17–34, 2014.
16. R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput. J.,

36(5):450–462, 1993.
17. R. Madhavan and V. Kuncak. Symbolic resource bound inference for functional

programs. In Computer Aided Verification (CAV), 2014.
18. R. Milner. An algebraic definition of simulation between programs. In IJCAI,

pages 481–489, 1971.
19. K. S. Namjoshi. Lifting Temporal Proofs through Abstractions. In VMCAI, volume

2575 of Lecture Notes in Computer Science, pages 174–188. Springer, 2003.
20. K. S. Namjoshi and L. D. Zuck. Witnessing program transformations. In SAS,

2013.
21. G. C. Necula. Translation validation for an optimizing compiler. In PLDI, 2000.
22. S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic

execution. In Foundations of SW Engineering (FSE ’08), pages 226–237, 2008.
23. A.-D. Phan, N. Bjørner, and D. Monniaux. Anatomy of alternating quantifier

satisfiability (work in progress). In SMT, pages 120–130, 2012.
24. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program

synthesis. In POPL, pages 313–326, 2010.

15

A The proof of Theorem 1.

Theorem 1. Let S(~s, ~x, ~s′) and T (~t, ~y, ~t′) be two programs such that S � T ,
and U ⊆ ~t. Let ρα be a simulation relation such that S �ρα α∃

U (T). Then, there
exists a relation Sk(~s, U) such that (a) ρα ∧ Sk is a simulation relation between
S and T and (b) Sk is a Skolem relation for U in (6).

Proof. Let ~t ≡ ~t1 ∪ U and ~t′ ≡ ~t′1 ∪ U ′. Since S � T , there exist relation ρ such
that S �ρ T and ρ =⇒ ρα. Let Sk be a relation over ~s, ~s′, U and U ′, such that

ρ(~s,~t) ≡ ρα(~s, ~t1) ∧ Sk(~s, U) ρ(~s′, ~t′) ≡ ρα(~s′, ~t′1) ∧ Sk(~s′, U ′) (18)

From (2) and (18), we get

ρα(~s, ~t1) ∧ Sk(~s, U) ∧ S(~s, ~s′) =⇒
∃~t′1, U ′, ~y · T (~t1, U, ~y, ~t′1, U ′) ∧ ρα(~s′, ~t′1) ∧ Sk(~s′, U ′) (19)

In (19), Sk is witnessing a Skolem relation for U . By Def. 6, we get:

∃U · ρα(~s, ~t1) ∧ S(~s, ~s′) =⇒
∃~t′1, U ′, ~y · T (~t1, U, ~y, ~t′1, U ′) ∧ ρα(~s′, ~t′1) ∧ Sk(~s′, U ′) (20)

Since (20) is valid then a weaker formula (21) is also valid.

∃U · ρα(~s, ~t1) ∧ S(~s, ~s′) =⇒ ∃~t′1, U, U ′, ~y · T (~t1, U, ~y, ~t′1, U ′) ∧ ρα(~s′, ~t′1) (21)

Notably, (21) is a simulation-checking-formula (6) for S and α∃
U (T). It means,

the chosen Sk is also a Skolem relation for (6). ut

B Concrete data

Tables 1, 2, 3 gather statistics for all 3 cases (S � T , S � αT , and S 6� αT)
respectively.

16

#Nondet Vars
name #Vars beg abs end Time cutpoints
locks/test_locks_14_unsafe.o3 5 0 0 0 4.34 0/51
locks/test_locks_15_unsafe.o3 5 0 0 0 4.32 0/51
locks/test_locks_15_unsafe.o0 4 0 0 0 0.18 0/5
locks/test_locks_14_unsafe.o0 4 0 0 0 0.18 0/5
ntdrivers/diskperf_unsafe.i.cil.o3 5 0 0 0 1.26 0/5
ntdrivers/diskperf_unsafe.i.cil.o0 36 0 0 0 152.23 0/11
ntdrivers/kbfiltr_unsafe.i.cil.o3 7 0 0 0 31.8 0/7
product-lines/minepump_spec3_product20_unsafe.cil.o3 4 0 0 0 0.84 0/3
product-lines/minepump_spec3_product18_unsafe.cil.o3 4 0 0 0 0.61 0/3
product-lines/minepump_spec3_product29_unsafe.cil.o0 4 0 0 0 0.58 0/3
product-lines/minepump_spec3_product05_unsafe.cil.o0 4 0 0 0 0.58 0/3
product-lines/minepump_spec3_product13_unsafe.cil.o0 4 0 0 0 0.61 0/3
product-lines/minepump_spec3_product24_unsafe.cil.o0 4 0 0 0 0.88 0/3
product-lines/minepump_spec3_product26_unsafe.cil.o3 4 0 0 0 0.56 0/3
product-lines/minepump_spec3_product30_unsafe.cil.o0 4 0 0 0 0.57 0/3
product-lines/minepump_spec3_product06_unsafe.cil.o0 4 0 0 0 0.6 0/3
product-lines/minepump_spec3_product25_unsafe.cil.o3 4 0 0 0 0.6 0/3
product-lines/minepump_spec3_product10_unsafe.cil.o3 4 0 0 0 0.59 0/3
product-lines/minepump_spec3_product17_unsafe.cil.o0 4 0 0 0 0.6 0/3
product-lines/minepump_spec3_product32_unsafe.cil.o3 4 0 0 0 0.92 0/3
product-lines/minepump_spec3_product08_unsafe.cil.o0 4 0 0 0 0.87 0/3
product-lines/minepump_spec3_product18_unsafe.cil.o0 4 0 0 0 0.59 0/3
product-lines/minepump_spec3_product11_unsafe.cil.o3 4 0 0 0 0.85 0/3
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–usb–storage–usb-storage.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 17 0 0 0 4.22 0/8
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-vp7045.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 64 0 0 0 4.06 0/56
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–scsi–libfc–libfc.ko-ldv_main5_sequence_infinite_withcheck_stateful.cil.out.o0 20 0 0 0 20.73 0/21
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–mfd–tps6105x.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 17 0 0 0 3.26 0/12
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–staging–keucr–keucr.ko-ldv_main1_sequence_infinite_withcheck_stateful.cil.out.o0 12 0 0 0 5.48 0/5
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–isdn–capi–kernelcapi.ko-ldv_main3_sequence_infinite_withcheck_stateful.cil.out.o0 15 0 0 0 5.91 0/5
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-vp7045.ko-ldv_main1_sequence_infinite_withcheck_stateful.cil.out.o3 231 0 0 0 111.13 0/65
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–mfd–tps6105x.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 6 0 0 0 1.34 0/8
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–isdn–capi–kernelcapi.ko-ldv_main3_sequence_infinite_withcheck_stateful.cil.out.o3 16 0 0 0 5.46 0/5
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-vp7045.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 70 0 0 0 19.85 0/32
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-vp7045.ko-ldv_main1_sequence_infinite_withcheck_stateful.cil.out.o0 162 0 0 0 14.82 0/117
systemc/transmitter.02_unsafe.cil.o3 28 0 0 0 12.49 0/7
systemc/token_ring.02_safe.cil.o3 37 0 0 0 23.86 0/7
systemc/pc_sfifo_1_safe.cil.o3 56 0 0 0 26.79 0/11
systemc/pc_sfifo_2_safe.cil.o3 105 0 0 0 34.46 0/13
systemc/transmitter.01_unsafe.cil.o3 22 0 0 0 1.93 0/12
systemc/token_ring.01_unsafe.cil.o0 56 0 0 0 80.07 0/7
systemc/transmitter.01_unsafe.cil.o0 39 0 0 0 22.3 0/7
systemc/bist_cell_safe.cil.o0 35 0 0 0 105.95 0/7
systemc/pc_sfifo_1_unsafe.cil.o3 56 0 0 0 16.19 0/11
systemc/token_ring.02_unsafe.cil.o3 37 0 0 0 25.85 0/7
systemc/pc_sfifo_2_unsafe.cil.o3 105 0 0 0 32.4 0/14
systemc/transmitter.03_unsafe.cil.o3 38 0 0 0 129.72 0/7
systemc/kundu1_unsafe.cil.o3 57 0 0 0 7.62 0/11
systemc/token_ring.01_safe.cil.o3 35 0 0 0 3.74 0/12
systemc/token_ring.01_unsafe.cil.o3 27 0 0 0 1.8 0/7
systemc/token_ring.01_safe.cil.o0 56 0 0 0 88.99 0/7

Table 1: Full cycle of SimAbs, S � T

17

#Nondet Vars
name #Vars beg abs end Time cutpoints
ntdrivers/floppy_safe.i.cil.o3 7 1 1 0 1.26 0/5
ntdrivers/kbfiltr_unsafe.i.cil.o0 10 1 1 0 57.22 0/7
ntdrivers/floppy_unsafe.i.cil.o3 3 1 1 0 0.14 0/5
product-lines/minepump_spec5_product47_safe.cil.o3 8 0 4 0 14.33 1/3
product-lines/minepump_spec1_product49_unsafe.cil.o0 6 0 3 0 5.81 1/3
product-lines/minepump_spec3_product36_unsafe.cil.o3 8 0 4 0 29.81 1/3
product-lines/minepump_spec3_product48_unsafe.cil.o3 8 0 4 0 32.29 1/3
product-lines/minepump_spec4_product52_safe.cil.o3 6 0 3 0 4.64 1/3
product-lines/minepump_spec5_product53_safe.cil.o0 6 0 3 0 6.89 1/3
product-lines/minepump_spec2_product58_safe.cil.o0 8 0 4 0 10.09 1/3
product-lines/minepump_spec1_product45_safe.cil.o0 6 0 3 0 4.63 1/3
product-lines/minepump_spec4_product38_unsafe.cil.o3 6 0 3 0 4.12 1/3
product-lines/minepump_spec1_product39_unsafe.cil.o0 8 0 4 0 18.13 1/3
product-lines/minepump_spec4_product38_unsafe.cil.o0 6 0 3 0 6.66 1/3
product-lines/minepump_spec4_product40_unsafe.cil.o0 8 0 4 0 36.17 1/3
product-lines/minepump_spec1_product58_safe.cil.o0 6 0 3 0 6.89 1/3
product-lines/minepump_spec5_product46_safe.cil.o3 6 0 3 0 5.12 1/3
product-lines/minepump_spec1_product50_unsafe.cil.o3 6 0 3 0 3.97 1/3
product-lines/minepump_spec4_product35_unsafe.cil.o3 6 0 3 0 3.69 1/3
product-lines/minepump_spec2_product43_unsafe.cil.o0 10 0 5 0 25.8 1/3
product-lines/minepump_spec2_product59_safe.cil.o0 10 0 5 0 43.92 1/3
product-lines/minepump_spec5_product64_safe.cil.o0 8 0 4 0 62.07 1/3
product-lines/minepump_spec4_product56_safe.cil.o0 8 0 4 0 49.44 1/3
product-lines/minepump_spec2_product38_safe.cil.o0 8 0 4 0 5.55 1/3
product-lines/minepump_spec1_product44_unsafe.cil.o0 8 0 4 0 16.69 1/3
product-lines/minepump_spec1_product63_safe.cil.o0 8 0 4 0 34.62 1/3
product-lines/minepump_spec1_product54_unsafe.cil.o0 6 0 3 0 6.8 1/3
product-lines/minepump_spec2_product51_safe.cil.o0 10 0 5 0 38.64 1/3
product-lines/minepump_spec1_product48_safe.cil.o3 8 0 4 0 17.85 1/3
product-lines/minepump_spec5_product52_safe.cil.o3 6 0 3 0 5.39 1/3
product-lines/minepump_spec5_product52_safe.cil.o0 8 0 4 0 28.23 1/3
product-lines/minepump_spec1_product36_unsafe.cil.o0 8 0 4 0 12.11 1/3
product-lines/minepump_spec2_product39_safe.cil.o3 10 0 5 0 10.9 1/3
product-lines/minepump_spec5_product40_safe.cil.o0 8 0 4 0 26.17 1/3
product-lines/minepump_spec5_product35_safe.cil.o3 6 0 3 0 2.72 1/3
product-lines/minepump_spec3_product34_safe.cil.o0 6 0 3 0 6.18 1/3
product-lines/minepump_spec4_product61_safe.cil.o0 6 0 3 0 10.57 1/3
product-lines/minepump_spec4_product54_safe.cil.o3 6 0 3 0 3.82 1/3
product-lines/minepump_spec2_product50_safe.cil.o3 8 0 4 0 6.27 1/3
product-lines/minepump_spec1_product42_unsafe.cil.o3 6 0 3 0 3.64 1/3
product-lines/minepump_spec2_product48_safe.cil.o3 10 0 5 0 24.22 1/3
product-lines/minepump_spec2_product45_safe.cil.o0 8 0 4 0 5.4 1/3
product-lines/minepump_spec4_product61_safe.cil.o3 6 0 3 0 5.08 1/3
product-lines/minepump_spec1_product57_safe.cil.o0 6 0 3 0 6.72 1/3
product-lines/minepump_spec5_product58_safe.cil.o0 6 0 3 0 8.19 1/3
product-lines/minepump_spec5_product35_safe.cil.o0 8 0 4 0 12.07 1/3
product-lines/minepump_spec2_product58_safe.cil.o3 8 0 4 0 6.72 1/3
product-lines/minepump_spec1_product33_unsafe.cil.o0 6 0 3 0 3.25 1/3
product-lines/minepump_spec3_product07_unsafe.cil.o0 4 2 2 0 1.16 0/3
product-lines/minepump_spec2_product53_safe.cil.o0 8 0 4 0 8.53 1/3
product-lines/minepump_spec1_product55_unsafe.cil.o0 8 0 4 0 27.13 1/3
product-lines/minepump_spec3_product45_safe.cil.o3 6 0 3 0 5.54 1/3
product-lines/minepump_spec1_product38_unsafe.cil.o3 6 0 3 0 2.77 1/3
product-lines/minepump_spec1_product58_safe.cil.o3 6 0 3 0 4.22 1/3
product-lines/minepump_spec3_product39_unsafe.cil.o3 8 0 4 0 14.71 1/3
product-lines/minepump_spec4_product53_safe.cil.o3 6 0 3 0 3.93 1/3
product-lines/minepump_spec4_product46_unsafe.cil.o0 6 0 3 0 7.39 1/3
product-lines/minepump_spec1_product60_safe.cil.o0 8 0 4 0 35.22 1/3
product-lines/minepump_spec1_product42_unsafe.cil.o0 6 0 3 0 3.84 1/3
product-lines/minepump_spec1_product43_unsafe.cil.o0 8 0 4 0 17.79 1/3
product-lines/minepump_spec3_product34_safe.cil.o3 6 0 3 0 5.65 1/3
product-lines/minepump_spec4_product43_unsafe.cil.o3 8 0 4 0 16.24 1/3
product-lines/minepump_spec1_product50_unsafe.cil.o0 6 0 3 0 6.42 1/3
product-lines/minepump_spec3_product40_unsafe.cil.o0 8 0 4 0 46.76 1/3
product-lines/minepump_spec4_product60_safe.cil.o0 8 0 4 0 30.59 1/3
product-lines/minepump_spec5_product56_safe.cil.o3 8 0 4 0 30.91 1/3
product-lines/minepump_spec5_product38_safe.cil.o3 6 0 3 0 2.88 1/3
product-lines/minepump_spec1_product44_unsafe.cil.o3 8 0 4 0 17.13 1/3
product-lines/minepump_spec3_product47_unsafe.cil.o0 8 0 4 0 43.21 1/3
product-lines/minepump_spec4_product40_unsafe.cil.o3 8 0 4 0 23.21 1/3
product-lines/minepump_spec5_product62_safe.cil.o3 6 0 3 0 7.35 1/3
product-lines/minepump_spec5_product64_safe.cil.o3 8 0 4 0 41.83 1/3
product-lines/minepump_spec5_product38_safe.cil.o0 6 0 3 0 4.19 1/3
product-lines/minepump_spec3_product45_safe.cil.o0 6 0 3 0 8.95 1/3
product-lines/minepump_spec2_product63_safe.cil.o0 10 0 5 0 47.37 1/3
product-lines/minepump_spec3_product46_safe.cil.o0 6 0 3 0 8.88 1/3
product-lines/minepump_spec1_product37_unsafe.cil.o3 6 0 3 0 2.88 1/3
product-lines/minepump_spec2_product57_safe.cil.o3 8 0 4 0 7.01 1/3
product-lines/minepump_spec1_product36_unsafe.cil.o3 8 0 4 0 14.3 1/3
product-lines/minepump_spec2_product45_safe.cil.o3 8 0 4 0 4.14 1/3
product-lines/minepump_spec1_product35_unsafe.cil.o0 8 0 4 0 11.73 1/3
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–usb–storage–usb-storage.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 30 1 1 0 8.23 0/8
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–usb–image–microtek.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 25 1 21 14 1.14 2/9
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–usb–image–microtek.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 18 0 13 6 1.72 2/9
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-az6027.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 19 0 15 12 15.23 1/5
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-pctv452e.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 85 0 66 62 49.18 1/15
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-pctv452e.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 39 0 21 19 33.73 1/15
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–staging–keucr–keucr.ko-ldv_main1_sequence_infinite_withcheck_stateful.cil.out.o3 25 1 1 0 6.03 0/5
systemc/pc_sfifo_2_safe.cil.o0 70 6 6 3 59.9 0/14
systemc/pc_sfifo_2_unsafe.cil.o0 70 6 6 3 59.14 0/15
systemc/kundu1_unsafe.cil.o0 40 10 10 4 13.14 0/7

Table 2: Full cycle of SimAbs, S � αT

18

#Nondet Vars
name #Vars beg abs end Time cutpoints
ntdrivers/diskperf_safe.i.cil.o3 5 0 0 0 1.41 1/5
product-lines/minepump_spec3_product50_safe.cil.o0 6 0 3 0 9.52 2/3
product-lines/minepump_spec2_product61_safe.cil.o3 8 0 4 0 5.42 2/3
product-lines/minepump_spec1_product54_unsafe.cil.o3 6 0 3 0 4.38 2/3
product-lines/minepump_spec3_product52_unsafe.cil.o0 8 0 4 0 55.3 2/3
product-lines/minepump_spec3_product51_unsafe.cil.o0 8 0 4 0 39.18 2/3
product-lines/minepump_spec4_product50_safe.cil.o0 6 0 3 0 3.27 1/3
product-lines/minepump_spec3_product54_safe.cil.o0 6 0 3 0 11.96 2/3
product-lines/minepump_spec3_product57_safe.cil.o0 6 0 3 0 10.95 2/3
product-lines/minepump_spec3_product49_safe.cil.o3 6 0 3 0 6.41 2/3
product-lines/minepump_spec3_product50_safe.cil.o3 6 0 3 0 6.48 2/3
product-lines/minepump_spec3_product60_unsafe.cil.o3 8 0 4 0 39.74 2/3
product-lines/minepump_spec4_product57_safe.cil.o3 6 0 3 0 3.12 1/3
product-lines/minepump_spec1_product63_safe.cil.o3 8 0 4 0 12.43 2/3
product-lines/minepump_spec3_product62_safe.cil.o0 6 0 3 0 13.54 2/3
product-lines/minepump_spec2_product54_safe.cil.o3 8 0 4 0 5.42 2/3
product-lines/minepump_spec1_product55_unsafe.cil.o3 8 0 4 0 11.84 2/3
product-lines/minepump_spec3_product58_safe.cil.o3 6 0 3 0 7.88 2/3
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–mtd–chips–cfi_cmdset_0001.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 236 0 146 145 21.11 1/121
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–input–mouse–synaptics_usb.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 22 1 18 10 8.51 3/10
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-az6027.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 43 0 10 7 2.97 2/27
ldv-linux-3.4/32_7_cilled_unsafe_const_ok_linux-32_1-drivers–input–mouse–synaptics_usb.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 18 0 13 4 9.34 3/10
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-az6007.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o0 87 0 10 10 15.5 1/84
ldv-linux-3.4/32_1_cilled_safe_ok_nondet_linux-3.4-32_1-drivers–media–dvb–dvb-usb–dvb-usb-az6007.ko-ldv_main0_sequence_infinite_withcheck_stateful.cil.out.o3 47 0 10 10 64.15 1/13
systemc/pc_sfifo_1_safe.cil.o0 43 3 20 1 4.9 6/12
systemc/pc_sfifo_1_unsafe.cil.o0 43 3 20 2 3.14 7/13

Table 3: Full cycle of SimAbs, S 6� αT

19

